

# The study

- Used circulating proton beam
  - Closed orbit data with 64 turns averaging.
  - Typically 8 different bump sizes per location.
- All the way around the ring,
  - except where LEP correctors were used.
  - Data taken with skew quads at nominal setting.
- Data quality
  - Roughly 70% of data were good.
    - ✓ Anomalous orbit motion at ~20  $\mu$ m level.
    - ✓ Corrupted data due to time line changes.

### 3-bump orbit analysis

#### · I90

- Polynomial fit of position data w.r.t. the first kick.
- Output 1st, 2nd, or 3rd order coefficient to R39 BPM file.
- R49, using "Magnet Move" option
  - Read in orbit from R39 BPM file.
  - Disable all quad/gradient magnets except within the 3-bump region.
  - Send data to MICADO for fitting
     ✓ tecker.fnal.gov
  - Look for sign of BPM coupling.
- · Calculate the equivalent rolled angle for coupling
  - Interpretation of fitted kick amplitudes.
  - Sort data for plotting

# H402:3 bump analysis result

#### First order

- coupling
  - √ equivalent to roll Q402B by 4 degrees.
- Second order
  - Horizontal plane, (bump leakage)
    - ✓ H400 is likely the source.
    - ✓ No evidence of sextupole content.
  - Vertical plane
    - ✓ Major kick source at Q402B
    - ✓ Implies existence of skew sextupole
    - ✓ Likely from LAM402.

# State of analysis

- First order orbit analysis
  - Completed 1st pass
    - ✓ Coupling locations found.
    - ✓ Rolled Trim dipoles.
    - ✓ Rolled BPMs.
- · 2nd & 3rd order orbit analysis
  - skew sextupole.
  - Octupoles.
  - skew Octupoles.
- Trim calibration
  - Bump closure analysis.
- The result not exhaustive
  - Available data does not cover the entire ring.

# H402 closed 3-bump orbits



# Signs of anomalous orbit kicks



# What we get with closed 3-bump data

#### Using H402:3 bump as an example



#### Vertical kick sources implies:

#### Location 1 & 5:

Rolled trim dipoles

#### Location 3:

- > Skew quad
- Rolled trim dipole

# Excess vertical BPM position readings

#### Location 2 & 4

> Rolled BPMs.

# H402 3-bump 1st order, vertical



# Turning R49 fit results into roll angles

|     | Bump plane | Horizontal       | FALSE       | Bump ve     | rtical     |                   |          |           |           |
|-----|------------|------------------|-------------|-------------|------------|-------------------|----------|-----------|-----------|
|     | Data plane | Vertical<br>H402 | TRUE<br>490 | 🗹 Data ver  | tical      | <b>✓</b> In degre |          |           |           |
|     |            | )+               |             | New In      | New Inputs |                   |          |           |           |
|     | Туре       | Device           | Bump pos    | Cross-plane | BPM data   | R49 fit, mr       | BPM, deg | Trim, deg | quad, deg |
| 479 | VKICKER    | V341             | 0.00000     |             |            |                   |          |           |           |
| 480 | VMONITOR   | VP341            | 0.00000     |             |            |                   |          |           |           |
| 481 | HMONITOR   | HP400            | 0.00000     |             |            |                   |          |           |           |
| 482 | HKICKER    | H400             | 0.00000     |             |            |                   |          |           |           |
| 483 | SBEND      | G400A            | 0.38088     |             |            |                   |          |           |           |
| 484 | QUADRUPOLE | Q400B            | 0.64309     |             |            |                   |          |           |           |
| 485 | VKICKER    | V401             | 1.56033     |             |            |                   |          |           |           |
| 486 | QUADRUPOLE | Q401A            | 1.63668     |             |            |                   |          |           |           |
| 487 | QUADRUPOLE | Q401B            | 2.26677     |             |            |                   |          |           |           |
| 488 | VMONITOR   | VP401            | 2.56151     |             | 0.049      |                   | 1.10     |           |           |
| 489 | HMONITOR   | HP402            | 4.99224     |             |            |                   |          |           |           |
| 490 | HKICKER    | H402             | 5.22542     |             |            | -0.017286         |          | 69.99     |           |
|     | QUADRUPOLE | Q402A            | 5.33695     |             |            |                   |          |           |           |
| 492 | QUADRUPOLE | Q402B            | 5.22008     |             |            | -0.017286         |          |           | -4.22     |
|     | QUADRUPOLE | Q403A            | 1.96805     |             |            |                   |          |           |           |
|     | QUADRUPOLE | Q403B            | 1.29723     |             |            |                   |          |           |           |
| 495 | VKICKER    | V403             | 1.25168     |             |            |                   |          |           |           |
| 496 | VMONITOR   | VP403            | 1.16760     |             |            |                   |          |           |           |
| 497 | HMONITOR   | HP404            | 0.10407     |             |            |                   |          |           |           |
|     | HKICKER    | H404             | 0.00000     |             |            | -0.001319         |          | -0.72     |           |
|     | QUADRUPOLE | Q404A            | 0.00000     |             |            |                   |          |           |           |
|     | SBEND      | G404B            | 0.00000     |             |            |                   |          |           |           |
|     | SBEND      | G405A            | 0.00000     |             |            |                   |          |           |           |
| 502 | SBEND      | G405B            | 0.00000     |             |            |                   |          |           |           |

# R49 fit result example

|      |                | Flag | Device name | mrad      | mm      | mils  | quad,deg | trim,deg | BPM,deg |
|------|----------------|------|-------------|-----------|---------|-------|----------|----------|---------|
| H100 | 1ST ORDER VERT | 1    | Q100B       | -0.0022   | 0.0489  | 1.9   | 0.75     |          |         |
| H102 | 1ST ORDER VERT | 2    | G100A       | -0.00202  | 0.029   | 1.1   | -4.37    |          |         |
|      |                |      | 10          |           |         |       |          |          |         |
|      |                | 1    | h100        | -0.00202  |         |       |          | -0.99    |         |
| H104 | 1ST ORDER VERT | 1    | Q103B       | -0.0008   | -0.0185 | -0.7  | 0.43     |          |         |
| h400 | 1st order vert |      | vp341       |           | 0.0621  |       |          |          | 1.48    |
| h402 | 1st order vert | 4    | Q402B       | -0.01109  | 0.2463  | 9.7   | -2.7     |          |         |
|      |                |      | vp401       |           | 0.049   |       |          |          | 1.1     |
|      |                |      | 01          |           |         |       | ,        |          |         |
|      | (mjy)          | 1    | Q402B       | -0.017286 | 0.38405 | 15.12 | -4.22    |          |         |
|      |                |      | h404        | -0.001319 |         |       |          | -0.72    |         |

# Simulation of skew quad field in LAM402



# H402:3 bump, 2nd order horizontal



# H402:3 bump, 2nd order vertical



### Rolled quads, Horizontal 3-bump data



# Rolled quads, Vertical 3-bump data



#### Rolled horizontal trims



# Rolled vertical trims



#### Rolled horizontal BPMs



### Rolled vertical BPMs



# Measured roll of horizontal BPMs, by Cons





# Measured roll of vertical BPMs, by Cons





### V609:3 closure example

```
- DB device page
*Page length: [ 25]
                              *History depth:[15]
                          prev_set reading prev_read
DB_name
               Setting
R_S328PM KGMM 209.184
                                    209.184
                                   -312.486
R_S329PM KGMM -312,486
R_S213PM KGMM -311.507
                                   -311.507
R: V605
                                    0
         Amps:
R: V607
         Amps
                                   -.9202881
                                   -1.864746
R: V609
         Amps -1.930298
R: V611
         Amps -4.691528
                                   -5.136621 -4.536621
R: V613
         Amps 0
≺Exit>
```

We have the 3-bump data for most of the locations for closure analysis.

